


# Protocol: Laser Microdissection of Single Cells for RNA Purification



### From Eye to Insight



### PREARRANGEMENTS

- Generally, fresh, frozen tissues are preferred for isolating RNA.
- Frozen sections can be obtained quickly on a cryostat.
- High quality RNA is achieved from tissues frozen immediately after surgery, which minimizes RNA degradation over time by ubiquitous RNases or heat.

#### **Choice of consumable**

Membrane based slides are the best choice for reliable Laser Microdissection. For RNA downstream analysis standard PEN glass slides (#11505189, #11505158 or #11600288) are recommended as these have the best price performance.

#### **Sterilizing Membrane Slides**

Several methods to sterilize LMD membrane slides are available: 1. autoclaving, 2. chemical treatment or 3. UV-C (254 nm) irradiation. Please note that sterilizing slides by autoclaving or UV-C-treatment does not guarantee complete destruction of RNases. For RNA preparation, especially from a single cell or from a small number of cells, RNase-free certified PEN membrane slides (#11505189) are recommended.



#### Method 1: Autoclaving

Place slides into a steel basket such as a slide holder for paraffinization and place the basket with the slides into a beaker or jar. Autoclave at 121 °C for 20 minutes.

#### **Method 2: Chemical Treatment**

Treat membrane Slide with RNase decontamination solution according manufacturer's instructions. Always rinse membranes and slides in RNase-free (molecular biology grade) water after chemical treatment to remove remaining chemicals.

#### Method 3: UV-Treatment

Incubate slides in a UV-C (254 nm) crosslink chamber and deliver at least 1 joule of energy (maximum power at 30 – 45 minutes, for #11505158 or #11600288 or max. 15 minutes for #11505189). Please refer to the manufacturer's information when using other UV-light sources.

UV-light sources from sterile flow hoods can also be used for sterilization instead of a cross linker.

Collection caps can be sterilized using the same UV-C light source: place the tubes with open cap facing the light source into the crosslink chamber/flow hood and at least 1 joule of energy (maximum power) for at least 45 minutes.

<u>Note</u>: Sterilizing methods can be combined and should be done shortly before membrane Slides are used.

The cap may be used dry, but can also be pre-filled with buffer to protect nucleic acids from degradation.





### SECTIONING

#### Freezing the Samples

Cryo tissue or organs should be flash-frozen (snap-frozen) after surgery followed by cryosectioning. Sections should be stained within a very short time, best practice: not exceeding in total 30 minutes.

#### Method 1: Flash-freezing using 2-methyl-butane (synonym: isopentane)

- 1. Precool 2-methyl-butane in a beaker surrounded by dry ice. This prevents the 2methyl-butane from bubbling over when the dry ice is added.
- 2. In a beaker or specimen container, add crushed dry ice to the 2-methyl-butane to make a slurry mixture (work in a hood).
- 3. When bubbling stops, the 2-methyl-butane is at the correct freezing temperature of approximately -90°C.
- 4. Immerse the embedded tissue slowly; eventually it will sink to the bottom of the 2methyl-butane.

<u>Safety Note</u>: Be sure to fully evaporate the 2-methyl-butane after freezing to prevent the possibility of explosion in the freezer.

#### Method 2: Flash-freezing in liquid nitrogen

- 1. Place liquid nitrogen in a styrofoam container.
- 2. Place the styrofoam container inside a Petri dish lid; a support rack may be needed to hold the Petri dish lid.
- 3. Place the tissue into a disposable mold and embed it in the tissue freezing medium; or alternatively, place the tissue (embedded in the tissue freezing medium) on a coverslip and place into the liquid nitrogen.



#### Method 3: Flash-freezing using 2-methyl-butane and liquid nitrogen

- 1. Place a beaker with 2-methyl-butane into liquid nitrogen and wait until the 2-methylbutane cools down to -80°C. This is the point when the wall of the beaker turns white, the 2-methyl-butane is now solid.
- 2. Insert the tissue into 2-methyl-butane and let it freeze. Alternatively, the tissue can be put onto a floating platform made of cork.

#### Method 4: Direct freezing at -80°C or using dry ice

- 1. Place fresh tissue in baked and pre-cooled aluminum foil or place the tissue onto a platform made of cork with some fresh OCT (cork allows easy re-store and re-use for cryostats later on).
- 2. Directly transfer tissue into -80°C (e.g. using a box with dry ice).

<u>Note</u>: Dry ice might increase the overall  $CO_2$  concentration which can alter the pH, tissue and RNA quality.



#### Cryo-Sectioning

Cryo blocks can be directly sectioned (recommended for RNA preparation) or stored at - 80°C. The temperature of the cryo blocks should be adjusted to -20°C in the cryostat before sectioning.

- 1. Clean the cryostat before sectioning to avoid contamination
- 2. Mount the cryo block onto the specimen clamp
- 3. Trim the sample to get a plane surface and an approach to the desired tissue
- Cut the block into 5–25 µm sections (according desired single cell diameter) and immediately place them on the slides for LMD and let the sections briefly thaw to the membrane

<u>Important</u>: If you are using FrameSlides, the FrameSupport is strongly recommended. Sections can be fixed with ice-cold acetone for 2–3 minutes, 70% or 100% ethanol for 20 seconds or mixture of ethanol : acetic acid (19:1) to increase the adhesion of the tissue to the PPS-, PEN-, PET-, POL- or FLUO-membranes.

Sample slides should be fixed and stained right after cryo-sectioning.

### From Eye to Insight





### **FIXATION & STAINING**

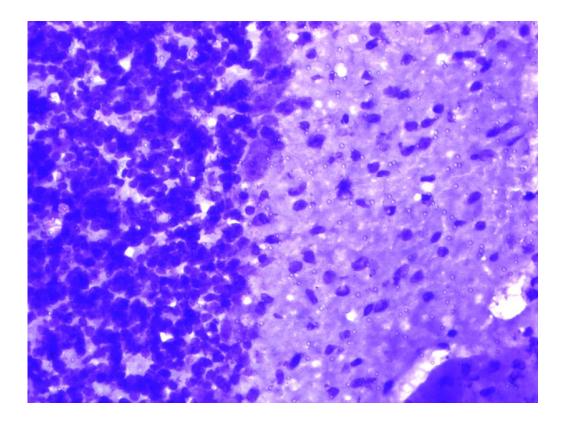
#### **Quick Cresyl Violet Staining**

Cresyl violet stain is commonly used for neuronal tissue. It is a basic stain that binds to acidic molecules of neuronal cytoplasm, such as RNA-rich ribosomes. Cresyl violet permanently stains a section and is suitable for both paraffin and frozen sections and subsequent RNA preparation.

#### **Recommended Modified Cresyl Violet Staining for RNA-Research**

For RNA protection Cresyl violet can be prepared and applied without PBS or water steps, preventing degradation of RNA by humidity activated RNases.

Modified Cresyl violet staining solution


- 1. Prepare Cresyl violet staining solution at least one week prior usage
- 2. Add 0.5 g Cresyl violet into 50 ml 100% ethanol
- 3. Mix solution and store at 4°C sealed air-tight and dark

#### Procedure

- 1. Mount section and fix in cold (-20°C) 75% ethanol for 2 minutes
- 2. Dip 2 x 1min in DEPC water in order to remove OCT
- 3. Apply Cresyl violet staining solution directly with syringe and sterile filter to the section and incubate for 1minute, swivel gently
- 4. Dip for 5 seconds in 75%, 90% and 100% ethanol
- 5. Final fixation is done in fresh 100% ethanol for 1 minute
- 6. Dry sample in drying chamber with desiccant

Adapted from Gründemann et al., NAR, 2008; Methods Mol Biol, 2011









# LASER MICRODISSECTION

Recommended number of dissected cells for RNA research:

In general gene expression profiling of single cells or as few as 10-30 cells has been reported. If quality tests of each microdissected sample is desired (e.g. using a RIN value) many more (hundreds-thousands of cells) are required to meet the minimum amount of RNA (5 ng or 50 pg) of the Bioanalyzer system.

| $\bigcap$ | T |  |
|-----------|---|--|
|           |   |  |
|           |   |  |

# PREPARATION OF NUCLEIC ACIDS

Leica Microsystems recommends the high-quality QIAGEN kits (RNeasy<sup>®</sup> Micro Kit) for preparation of nucleic acids. They can be immediately used in downstream applications such as PCR, sequencing, quantitative, real-time PCR, or can be stored at –20°C until needed. Please refer to <u>www.giagen.com</u> for details.

# **GENE EXPRESSION ANALYSIS**

Gene expression analysis is classically done via qPCR. Technologies such as Microarrays or next generation sequencing (NGS) are applicable as well



#### REFERENCES

Bandyopadhyay et al., JoVE, 2014 Schlaudraff et al., Neurbiol of Aging, 2014 Gründemann et al., Methods Mol Biol, 2011 Gründemann et al., NAR, 2008

#### FEEDBACK

Do you miss anything in the protocol or do you have questions or suggestions? Please <u>contact</u> us.

Leica Microsystems CMS GmbH | Ernst-Leitz-Strasse 17–37 | D-35578 Wetzlar (Germany) Tel. +49 (0) 6441 29-0 | F +49 (0) 6441 29-2599

www.leica-microsystems.com/Imd-geneexpression